Chemists searching for the island of stability now have a better map. Thanks to the discovery of six new variations of the superheavy elements on the bottom
 Researchers at Lawrence Berkeley National Laboratory in California  saw the isotopes of rutherfordium, seaborgium, hassium, darmstadtium,  and copernicium by watching the decay of the yet-to-be-named element  114, a synthetic element first produced about a decade ago. Each isotope  of an element differs in the number of neutrons in its nucleus, a  variable that can affect radioactivity and other properties.
Researchers at Lawrence Berkeley National Laboratory in California  saw the isotopes of rutherfordium, seaborgium, hassium, darmstadtium,  and copernicium by watching the decay of the yet-to-be-named element  114, a synthetic element first produced about a decade ago. Each isotope  of an element differs in the number of neutrons in its nucleus, a  variable that can affect radioactivity and other properties.
The nuclear chemists created a sample of element 114 by bombarding a plutonium target with a beam of calcium ions. As the handful of atoms began to decay — a process that takes less than a tenth of a second — the team saw six previously undiscovered isotopes of other heavy elements, the researchers report in an upcoming issue of Physical Review Letters.
Heavy radioactive elements tend to decay quickly, most commonly by emitting an alpha particle — two protons and two neutrons, the nucleus of a helium atom. Researchers saw element 114 spit out alpha particles in a chain, creating isotopes of elements 112, 110, 108, 106, and 104 — with 169, 167, 165, 163 and 161 neutrons respectively.
Some of the isotopes are living longer, or have a longer half-life, than previously observed superheavy elements. One isotope of element 114 lasts 2.7 seconds before decaying — an “eternity,” says Heino Nitsche, a nuclear chemist at Lawrence Berkeley.
Scientists believe that certain combinations of protons and neutrons in a superheavy element’s nucleus would place it in an “island of stability” where radioactive decay would be substantially slower than in the superheavy elements discovered so far. The new isotopes may help guide theorists to a better understanding of just where that island lies.
“The half-lives are picking up in a fashion that’s pretty encouraging,” says chemist Paul Karol at Carnegie Mellon University. “If they actually find something and they live long enough, it means they can do some chemistry on it, which brings it back to the world we can actually see.”
The isotopes don’t behave quite as expected — some decay more readily, some less willingly, than the leading theoretical model predicts. The discrepancies mean something isn’t quite right with the theory that predicts how atoms behave as they are synthesized heavier and heavier.
“The theories don’t describe the nucleus. This will give a fundamental improvement of understanding of the nucleus,” says Nitsche.
Image: Flickr/Wolfram Burner
See Also:
- Russian Physicists Synthesize New Superheavy Element 117
- Superheavy Element 114 Finally Re-created
- New Muon Detector Could Find Hidden Nukes
- Historic Atom Smasher Reduced to Rubble and Revelry
Authors: Marissa Cevallos
 Le principe Noemi concept
		    			Le principe Noemi concept			   
			 Astuces informatiques
		    			Astuces informatiques			   
			 Webbuzz & Tech info
		    			Webbuzz & Tech info			   
			 Noemi météo
		    			Noemi météo			   
			 Notions de Météo
		    			Notions de Météo			   
			 Animation satellite
		    			Animation satellite			   
			 Mesure du taux radiation
		    			Mesure du taux radiation			   
			 NC Communication & Design
		    			NC Communication & Design			   
			 News Département Com
		    			News Département Com			   
			 Portfolio
		    			Portfolio			   
			 NC Print et Event
		    			NC Print et Event			   
			 NC Video
		    			NC Video			   
			 Le département Edition
		    			Le département Edition			   
			 Les coups de coeur de Noemi
		    			Les coups de coeur de Noemi			   
			 News Grande Région
		    			News Grande Région			   
			 News Finance France
		    			News Finance France			   
			 Glance.lu
		    			Glance.lu			   
			 








